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(1) 279–284, 1998.—Sex differences in the
effects of haloperidol in the escape–avoidance response have previously been found in various studies carried out in our lab-
oratory in which mice were used as experimental subjects. Males were more affected than females by the disruptive effects of
this neuroleptic of frequent clinical use. In the present work these sex differences were evaluated in a unique training session
using several doses of the drug (0.075, 0.25, and 0.75 mg/kg IP). The number of avoidances, escapes, nonresponses, crossings
during the adaptation period, crossings during intertrial intervals, and response latencies were analyzed. Statistically signifi-
cant sex differences were found in the number of escapes and nonresponses: males showed fewer escape responses and more
nonresponses than females. These sex differences were dose dependent: a positive correlation was obtained between doses of
haloperidol and sex differences observed in the number of escapes and nonresponses. The higher the dose, the greater the sex
differences. These are related not only to the impairment of motor activity, because no sex differences were found in the
number of crossings during the adaptation period and intertrial intervals. © 1998 Elsevier Sciences Inc.
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ESCAPE–AVOIDANCE response has been considered a use-
ful tool for selecting and studying antipsychotic drugs (14,16,
18,31,47); such drugs disrupt the ability of animals to avoid shock
at doses that do no alter escape behavior (14,39,42,56). Many
studies have shown that haloperidol, like other neuroleptics,
produces a dose-dependent impairment on the acquisition and
performance of this active avoidance conditioning. These effects
of haloperidol on acquisition of a conditioned avoidance response
in rodents have been explored in studies using acute adminis-
tration (3,4,18,33,44,46,47,50,52,54,64,65,66) and studies in
which haloperidol was repeatedly administered (5,6,9,13,30,56).

Also sex differences in the effects of haloperidol (and
other neuroleptics) have been described in human subjects
(19,28,36,43,55,57–59,61,62,68) as well as in several experi-
mental procedures with animals (4,5,7,8,12,17,20,32,44,45,53).

Sex differences in the effects of haloperidol on escape–
avoidance response have previously been found in several
studies carried out in our laboratory using mice as experimen-
tal subjects (4,5,44).

In one study, sex differences in the effects of haloperidol
were observed in the unique training session of an active
avoidance task. Using a dose (0.25 mg/kg) that clearly deterio-
rates avoidance responses in rats (56), OF1 male mice showed
fewer escape responses and more nonresponses than females;
however, sex differences were not observed in motor activity,
measured by the number of crossings during the adaptation
period and intertrial intervals (4). Similar results have re-
cently been found with BALB/c mice (44).

Another study (5) was carried out to further evaluate sex
differences in acquisition and performance of escape–avoid-
ance response in mice. The drug’s effects on motor behavior
were also controlled. For this purpose, the effects of daily ad-
ministration (for 5 days) of 0.075 mg/kg of haloperidol on the
acquisition of a conditioned avoidance response were ex-
plored. Forty-eight hours after the last drug administration,
performance was evaluated in the drug-free subjects, and part
of the saline-treated animals were tested under haloperidol.
Residual effects of haloperidol on behavior are not usually
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found after this lapse of time (2,41). The results showed sex
differences in the effects of haloperidol, both in the acquisi-
tion and the performance of the escape–avoidance response.
Thus, males trained on the drug, and later testing drug free,
made less avoidance responses and their escape latencies
were longer than those of their saline controls (5).

The present investigation was designed to evaluate the sex
differences in the effects of several doses of haloperidol
(0.075, 0.25, and 0.75 mg/kg) on escape–avoidance response in
OF1 mice after a single administration.

 

METHOD

 

Subjects

 

Forty male and 40 female OF1 mice from IFFA CREDO
(Lyon, France), weighing between 30–36 g and 24–28 g, res-
pectively, at the start of the experiment, were used as experi-
mental animals. They arrived in the laboratory at 42 days of
age and were housed in the same room, for 13 days, in unisex-
ual groups of five in translucent plastic cages (25 

 

3

 

 25 

 

3

 

 14.5
cm) under a reversed light–dark cycle (lights off: 0630–1830
hours, local time) with food and water available ad lib, and
controlled room temperature (22 

 

6

 

 2

 

8

 

C).

 

Drugs

 

Haloperidol (Haloperidol

 

®

 

, Syntex Latino, Spain) was di-
luted with 0.9% saline to obtain the doses of 0.075, 0.25, and
0.75 mg/kg. Control animals received 0.9% saline alone. Injec-
tions were administered intraperitoneally (IP) in a volume of
0.01 ml/g body weight.

 

Apparatus

 

A computerized two-way shuttle-box (Shuttle Scan, Model
SC-II, Omnitech Electronics, Inc., Columbus, OH) described
in detail elsewhere (4), and the RMS V.2.06 Omnitech Elec-
tronics software were used.

 

Procedure

 

After the period of adaptation to the laboratory, the ani-
mals were randomly assigned to one of four groups (

 

n

 

 

 

5

 

 10)
in each sex and received the following treatments: (a) 0.9%
saline, (b) 0.075 mg/kg of haloperidol, (c) 0.25 mg/kg of halo-
peridol, or (d) 0.75 mg/kg of haloperidol. Each animal was
tested once in the shuttle-box 30 min after injection. This pre-
treatment time was selected given that maximal brain concen-
trations of haloperidol in mice are attained 15 min after injec-
tion and remain high, although slowly declining, for 2 h after
injection (69). Also, this pretreatment interval allows testing
animals in a successive sequence and timely fashion. The test
consisted of: (a) 2 min of adaptation to the apparatus, in
which the animal explored the box and moved freely; and (b)
30 trials of two-way escape–avoidance with an intertrial inter-
val (ITI) of 30 

 

6

 

 10 s. Each trial consisted of the presentation
of a light (6 W) in the compartment occupied by the mouse,
which, after 5 s, was overlapped with a 0.3 mA foot shock of
10 s in duration. A conditioned avoidance response was de-
fined as a crossing to the opposite side during only the light
period; an escape was defined as a crossing when the shock
was on, and a nonresponse was defined as the absence of
crossing. All tests were run in a room different from the home
room between 0900 and 1600 h (local time).

The following behavioral parameters were computed:
number of avoidances, number of escapes, number of non-

responses, latencies of responses (avoidances and escapes),
number of crossings during the adaptation period, and num-
ber of crossings during ITIs.

 

Statistical Analysis

 

All measures were subjected to analysis of variance
(ANOVA), with treatment and sex as the main factors, sup-
plemented by Newman–Keuls pairwise comparisons and tests
of simple main effects.

 

RESULTS

 

Table 1 summarizes the effects of haloperidol on the dif-
ferent variables of the escape–avoidance response and the sex
differences found in these effects. The drug decreased the
number of escapes, 

 

F

 

(3, 72) 

 

5

 

 13.92, 

 

p

 

 

 

,

 

 0.0001, and in-
creased the number of nonresponses, 

 

F

 

(3, 72) 

 

5

 

 15.87, 

 

p

 

 

 

,

 

0.0001; the animals treated with 0.25 mg/kg or 0.75 mg/kg of
haloperidol had less escapes and more nonresponses than the
animals treated with saline (Newman–Keuls: 

 

p

 

 

 

,

 

 0.01, in all
cases). Haloperidol also significantly increased response la-
tencies, 

 

F

 

(3, 72) 

 

5

 

 13.13, 

 

p

 

 

 

,

 

 0.0001. The animals treated with
0.075 mg/kg (Newman–Keuls: 

 

p

 

 

 

,

 

 0.05) as well as those treated
with 0.25 mg/kg or 0.75 mg/kg of haloperidol showed longer
latencies than the saline controls (Neuman–Keuls: 

 

p

 

 

 

,

 

 0.01,
both cases). Treatment was also statistically significant in the
number of crossings during the adaptation period, 

 

F

 

(3, 72) 

 

5

 

4.49; 

 

p

 

 

 

,

 

 0.01 and crossings during ITIs, 

 

F

 

(3,72) 

 

5

 

 4.64; 

 

p

 

 

 

5

 

0.005; haloperidol reduced the crossings during the adaptation
period of the 0.75 mg/kg group (Newman–Keuls: 

 

p

 

 

 

,

 

 0.01)
and the ITIs crossings of the 0.25 mg/kg and 0.75 mg/kg
groups (Newman–Keuls: 

 

p

 

 

 

,

 

 0.01, both cases).
Regarding the number of avoidances, the test of simple

main effects showed sex differences in the control groups
treated with saline, 

 

F

 

(1, 72) 

 

5

 

 4.23, 

 

p

 

 

 

,

 

 0.05: males showed a
higher number of avoidances. And although treatment was
not significant in this measure, 

 

F

 

(3, 72) 

 

5

 

 1.85, NS, the simple
main effects analysis also revealed that haloperidol reduced
the number of avoidances in males, 

 

F

 

(3, 72) 

 

5

 

 2.91, 

 

p

 

 

 

,

 

 0.05,
but not in females, 

 

F

 

(3, 72) 

 

5

 

 0.48, NS.
The factor sex was statistically significant in the number of

escapes, 

 

F

 

(1, 72) 

 

5

 

 4.27, 

 

p

 

 

 

,

 

 0.05, with females showing more
escapes than males. The simple main effects analysis revealed
sex differences in the animals treated with 0.75 mg/kg of halo-
peridol, 

 

F

 

(1, 72) 

 

5

 

 5.24, 

 

p

 

 

 

,

 

 0.05, with females having more
escapes than males. No sex differences were found in the rest
of treatments.

There were also significant sex differences in the number
of nonresponses, with males showing a higher number of non-
responses than females, 

 

F

 

(1, 72) 

 

5

 

 3.96, 

 

p

 

 

 

5

 

 0.05. The simple
main effects analysis revealed sex differences in the animals
treated with 0.75 mg/kg of haloperidol, 

 

F

 

(1, 72) 

 

5

 

 5.65, 

 

p

 

 

 

,

 

 0.05.
Moreover, the male groups of 0.25 mg/kg or 0.75 mg/kg showed
more nonresponses than the control group (Newman–Keuls:

 

p

 

 

 

,

 

 0.01), while with the females only one group (0.25 mg/kg)
was statistically different from the saline group (

 

p

 

 

 

,

 

 0.05).
An interesting point to investigate is the existence of a

dose-dependent relationship between the doses of haloperi-
dol and the sex differences observed in the number of escapes
and the number of nonresponses. These measures were se-
lected because they have usually been revealed to be the most
sensitive for showing sex differences in the effects of haloperi-
dol on the escape–avoidance response (4,5). A positive corre-
lation was found between the doses of haloperidol and the sex
differences observed in the number of escapes (mean of es-
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capes in females minus mean of escapes in males) (

 

r

 

2

 

 

 

5

 

 0.938)
and the number of nonresponses (mean of nonresponses in
males minus mean of nonresponses in females) (

 

r

 

2

 

 

 

5

 

 0.897);
the higher the dose, the greater the sex differences (see Fig. 1).

Sex was nearly statistically significant in response laten-
cies, 

 

F

 

(1,72) 

 

5

 

 3.74, 

 

p

 

 

 

5

 

 0.057, indicating longer latencies of
responses in males. And the test of simple main effects
showed sex differences with the 0.25 mg/kg dose of haloperi-
dol, 

 

F

 

(1, 72) 

 

5

 

 4.11, 

 

p

 

 

 

,

 

 0.05. Furthermore, males treated
with 0.25 mg/kg or 0.75 mg/kg of haloperidol had longer laten-
cies than saline males (Newman–Keuls: 

 

p

 

 

 

,

 

 0.01), while with
the females only the 0.75 mg/kg group showed longer laten-
cies than the saline group (Newman–Keuls: 

 

p

 

 

 

,

 

 0.05).
No sex differences were observed in the motor activity

measures in either the number of crossings during the adapta-
tion period or crossings during ITIs, 

 

F

 

s 

 

,

 

 1; NS.

 

DISCUSSION

 

The effects of three doses (0.075, 0.25, and 0.75 mg/kg IP)
of haloperidol on several parameters of the escape–avoidance
response in OF1 mice were evaluated. The results obtained
are a further example of the well-known inhibitory effect of
this drug on conditioned avoidance response, showing a de-
crease in the number of escapes and an increase in response
latencies and the number of nonresponses. Haloperidol also
diminished the spontaneous motor activity by decreasing the
number of crossings during the adaptation period and inter-
trial intervals.

Neuroleptics have the specific effect on conditioned avoid-
ance response (CAR) of reducing the number of avoidances and

increasing the number of escapes without affecting the num-
ber of nonresponses [e.g. (14)]. This result is obtained when
low doses and several sessions are involved. In the present ex-
periment, haloperidol doses of 0.25 and 0.75 mg/kg (which are
higher than those used in CAR experiments) reduced the
number of escapes and increased the number of nonre-
sponses. This could be considered as a nonspecific effect.

The inhibitory effect of haloperidol was stronger on males
than females. Significant sex differences were found in the
number of escapes and nonresponses, with males showing less
escapes and more nonresponses than females. Sex differences
were statistically significant at the highest dose (0.75 mg/kg)
of haloperidol.

There were also specific sex differences in response laten-
cies, where males treated with 0.25 mg/kg of haloperidol had
longer latencies than their respective females; and in the num-
ber of avoidances, where males had more avoidances than fe-
males in the saline groups. The difference in avoidance has to
be considered with caution due to the low number of avoid-
ances (the average in the most favorable case—saline males—
is of 1.5 avoidances per animal). Avoidances in only one ses-
sion of escape–avoidance are not a relevant parameter.

It can be argued that the sex differences observed at the
highest dose were secondary to sex differences in the catalep-
togenic effects of haloperidol. Our results in the spontaneous
motor activity measures did not show sex differences. Nor does
literature data support such an assumption because the halo-
peridol made the male mice less cataleptic than females (45).

A positive correlation was obtained between doses of halo-
peridol and sex differences found in the number of escapes
and nonresponses. The higher the dose, the greater the sex

TABLE 1

 

MEAN NUMBER (

 

6

 

STANDARD ERROR) OF AVOIDANCES, ESCAPES, NONRESPONSES, CROSSINGS DURING THE ADAPTATION
PERIOD (ADAP-CROSS), AND CROSSINGS DURING ITIS (ITI-CROSS); AND MEAN LATENCIES OF RESPONSES AFTER ACUTE

ADMINISTRATION OF HALOPERIDOL

Avoidances Escapes Nonresp. Latencies Adap-Cross ITI-Cross

 

Treatment
Saline 0.95 

 

6

 

 0.42 24.7 

 

6

 

 1.27 4.35 

 

6

 

 1.20 6.96 

 

6

 

 0.15 9.65 

 

6

 

 1.61 6.7 

 

6

 

 1.32
Haloperidol 0.075 mg/kg 0.6 

 

6

 

 0.27 23.1 

 

6

 

 1.18 6.3 

 

6

 

 1.18 7.59 

 

6

 

 0.23* 7 

 

6

 

 1.19 5.8 

 

6

 

 1.07
Haloperidol 0.25 mg/kg 0.35 

 

6

 

 1.18 13.9 

 

6

 

 1.96† 15.75 

 

6

 

 1.97† 8.66 

 

6

 

 0.36† 6.7 

 

6

 

 1.37 2.7 

 

6

 

 0.8†
Haloperidol 0.75 mg/kg 0.1 

 

6

 

 0.07 13.7 

 

6

 

 1.85† 16.2 

 

6

 

 1.85† 9.0 

 

6

 

 0.28† 3.05 

 

6

 

 0.7† 2.55 

 

6

 

 0.5†
NS

 

p

 

 

 

,

 

 0.0001

 

p , 0.0001 p , 0.0001 p , 0.01 p , 0.005

Sex Differences
Saline

Males 1.5 6 0.78 24.7 6 1.87 3.8 6 1.60 6.65 6 0.24 11.3 6 2.39 6.5 6 1.98
Females 0.4 6 0.26 24.7 6 1.81 4.9 6 1.85 7.26 6 0.15 8.0 6 2.16 6.9 6 1.87

p , 0.05 NS NS NS NS NS
Haloperidol 0.075 mg/kg

Males 0.4 6 0.40 21.9 6 1.60 7.7 6 1.71 7.87 6 0.38 6.6 6 1.75 7.6 6 1.48
Females 0.8 6 0.39 24.3 6 1.72 4.9 6 1.59 7.30 6 0.23 7.4 6 1.70 4.0 6 1.40

NS NS NS NS NS NS
Haloperidol 0.25 mg/kg

Males 0.4 6 0.30 12.2 6 2.71 17.4 6 2.79 9.17 6 0.61 6.5 6 1.89 3.0 6 1.37
Females 0.3 6 0.21 15.6 6 2.88 14.1 6 2.84 8.16 6 0.36 6.9 6 2.09 2.4 6 0.88

NS NS NS p , 0.05 NS NS
Haloperidol 0.75 mg/kg

Males 0 6 0 10.1 6 2.19 19.9 6 2.19 9.32 6 0.47 2.2 6 0.84 2.1 6 0.62
Females 0.2 6 0.13 17.3 6 2.61 12.5 6 2.58 8.68 6 0.33 3.9 6 1.12 3.0 6 0.98

NS p , 0.05 p , 0.05 NS NS NS

*p , 0.05 and †p , 0.01 vs. saline group (Newman–Keuls).
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differences (see Fig. 1). This indicates that sex differences in
the effects of haloperidol on escape–avoidance response in
mice is a dose-dependent phenomenon.

The present results also confirm the sex differences ob-
served in the effects of haloperidol (and other neuroleptics) in
several experimental procedures with animals (4,5,8,12,17,20,
32,44,45,53) as well as with human subjects (19,28,36,43,56,57–
59,61,62,68).

With respect to the origin of the sex differences observed
in the action of neuroleptics, several explanations have been
proposed. Three of them must be specially considered:
(a) Female hormones: numerous studies suggest that central
dopaminergic transmission is modulated by oestrogens (10,17,
21–23,26,27,29,34,35,37,38,40,48,51,60,63,68). Thus some mea-
sures of dopaminergic activity have been found to change
across different phases of the estrous cycle. For example, in
the different brain regions of the rat the turnover rates of
dopamine fluctuate across the estrous cycle (38,51). Animal
experiments and postmortem analyses have shown that
chronic estrogen applications significantly shorten dopamine-

induced behavior and reduce D2 receptor sensitivity in the
brain (27). Also, the acquisition of conditioned avoidance re-
sponses is influenced by the sexual hormone changes that oc-
cur during the rat’s estrous cycle. This response improved at
diestrus, but it deteriorates at estrus and metestrus (21–23).

Different hormone-related mechanisms interact with some
effects of haloperidol. In this sense, the increase in the turn-
over of dopamine evoked by this drug has been found to be
greater in the estrous phase than in other phases of the ova-
rian cycle (38). Other studies also indicate that behavioral re-
sponses to dopamine agonists (29,35,37) or antagonists (15,17)
are affected by estrogens.

Therefore, a considerable amount of evidence seems to
indicate that female hormones and central dopaminergic
mechanisms interact, although how they interact remains un-
clear. The most important hypothesis postulates that anti-
dopaminergic properties of estrogens have a protective func-
tion in schizophrenia. This hypothesis accounts for many of
the observed gender differences, such as a later onset of ill-
ness, better outcome indices, and superior neuroleptic re-
sponse in women, as well as an exacerbation of symptoms in
periods of low levels of estrogens, e.g., after menopause (60).
(b) Pharmacokinetic differences: pharmacokinetic dissimilari-
ties between male and female schizophrenic patients, as re-
flected by differences in pharmacologic measures, such as ho-
movanillic acid (HVA) and prolactin levels, have been
observed. Women with chronic schizophrenia have been re-
ported to have both higher prolactin and HVA levels while
taking neuroleptics than do men, whereas higher plasma lev-
els of neuroleptics have been found in men than in women fol-
lowing equivalent doses of those drugs (11, 28,61,68).

The pharmacokinetic differences could be due to differ-
ences in absorption because gastric acid secretion differs be-
tween men and women. Gastric emptying and also gas-
trointestinal transit time is slower in females than in males
and appears to be correlated with the level of sex hormones
(25). With respect to distribution, lipid-soluble neuroleptics
are distributed comparatively widely and show longer elimi-
nation half-lives in women because they have a higher propor-
tion of adipose tissue than men (19,59). Another possible ex-
planation refers to different intensities of hepatic catabolism
of haloperidol in males and females. Liver enzymatic activity
is generally thought to be more efficient in men (59), particu-
larly conjugation reactions, such as glucoronidation—in-
volved in the catabolism of haloperidol—(25). This fact would
not explain either the present results or previous studies (4,5,
44), where males were more affected than female by haloperi-
dol. (c) Sensitivity to pain: it could be considered that female
mice are more sensitive to pain and react more quickly to
shock presentation than males (due or not to their body
weight). In fact, a greater sensitivity and a lower threshold to
grid shock of female rats have been described (49). If so, there
should be sex differences in saline subjects; however, these
differences were only found in haloperidol-treated animals in
the present experiment and similar previous studies (4,5). To
accept this interpretation of the facts, it would be necessary to
admit that haloperidol attenuates sensitivity to shock in both
sexes, and that this decrement is greater in males than in fe-
males.

Therefore, the neurochemical mechanisms involved in the
origin of the sex differences in the effects of haloperidol in es-
cape–avoidance response in mice remain unclear.

It could be argued that several sessions are necessary to
properly study the sex differences in the effects of neurolep-
tics in escape–avoidance response, but we have previously

FIG. 1. Relationship between doses of haloperidol and sex differences
in: (A) escapes (mean number of escapes in females minus mean
number of escapes in males), the best-fit quadratic function fitted to
the data is based on the equation y 5 27.9782 X2 1 14.86 1 0.5142
(r2 5 0.938); and (B) nonresponses (mean number of nonresponses in
males minus mean number of nonresponses in females), y 5 212.492
X2 1 19.331 X 2 0.12585 (r2 5 0.897).
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found these sex differences either in one (4,44) or in several
sessions (5). We chose one session for the present work for
economy. Also, it is important to note that the doses em-
ployed in this study are too high for repeated administration.

It has been proposed that the deleterious effects of neuro-
leptics on motor activity disrupt the process of initiating the
response (24). The anhedonia hypothesis holds that neurolep-
tics interfere with conditioned responses by decreasing the re-
inforcing power of the stimuli (67). Also, the so-called apathy
hypothesis indicates that neuroleptics produce a lack of moti-
vation, a more general effect on learning that affects positive
and negative reinforcement (1). Controversy regarding escape–
avoidance response has usually been focused on whether the
disruptive effects of neuroleptics are purely motor effects or if
learning is also affected. As the motor explanation cannot ex-
plain why the animals trained under haloperidol but tested
free of drug still show the impairment of conditioned behavior
(5), we think that neuroleptics affect also the very process of
learning.

No sex differences were found in the number of crossings
during the adaptation period and intertrial intervals of the
present experiment, both measures of the motor activity of

the animals. This suggests that the sex differences observed are
related to the learning process, and they are not purely due to
an impairment of motor behavior.

In conclusion, the present results confirm the existence of
sex differences in the effects of haloperidol in escape–avoid-
ance response in mice as observed in earlier studies (4,5,44).
These sex differences, observed in a unique training session,
seem to be dose dependent and related to the learning process.

Further investigation is necessary to evaluate the general-
ity of these sex differences. It could be considered appropriate
to study larger doses of haloperidol and complete the dose–
response curve for these differences. However, the substantial
reduction of motor activity produced by larger doses could be
an important limitation. Future studies in this field with other
neuroleptics are especially necessary to check if this phenom-
enon is specific to haloperidol or general to antipsychotic drugs.
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